Pedestrian Level Wind (PLW)

Pedestrian Level Wind (PLW)

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Adamek, K., Vasan, N., Elshaer, A, English, E., and Bitsuamlak, G.T. (2017), “Pedestrian level wind assessment through city development: A study of the financial district in Toronto”, Sustainable Cities and Societies, 35, 178-190.
Elshaer, A., Gairola, A., Adamek, K., and Bitsuamlak, G.T. (2017). Variations in wind load on tall buildings due to urban development. Sustainable Cities and Society, 34, 264-277.

Topography Effects

Topography Effects

Topography effect on wind flows (hence wind load) – also referred as “speed-up” can be effectively estimated through CFD based simulations. These simulations can also be used for wind farm siting.

Nasir Z., and Bitsuamlak, G.T. (2018). Topographic effect on a tornado like vortex. Wind and Structures, 27(2), 123-136.
Bitsuamlak et al. (2014) Application Guide for Wind Speed-up Factors. Published and distributed by CEATI (Center for Energy Advancement through Technological Innovation), Montreal, QC
Abdi, D. and Bitsuamlak, G.T. (2014). Wind flow simulations on idealized and real complex terrain using various turbulence models. Advances in Engineering Software, 75, 30–41.
Bitsuamlak, G.T., Stathopoulos, T., Bédard, C. (2007). Effect of topography on design wind load combined numerical and neural network approach”, Journal of Computing in Civil Engineering, ASCE, 21 (6), 384-392.
Bitsuamlak, G.T., Stathopoulos, T., Bédard, C. 2006. “Effect of upstream hills on design wind load: a computational approach. Wind and Structures, 9(1), 37-58.
Bitsuamlak, G.T., Stathopoulos, T., Bédard, C. (2004). Numerical evaluation of turbulent flows over complex terrains: A review, Journal of Aerospace Engineering, 17(4), 135-145.

Implicit Exposure Modeling

Inflow turbulence generation

Random flow generation method – Such as Consistent Discrete Random Flow Generation (CDRFG).

Precusor method – by using boundary layer wind tunnel measurments (or its virtual simulation) or flow over fractal sufraces etc.

Nasir Z., and Bitsuamlak, G.T. (2018). Topographic effect on a tornado like vortex. Wind and Structures, 27(2), 123-136.
Bitsuamlak et al. (2014) Application Guide for Wind Speed-up Factors. Published and distributed by CEATI (Center for Energy Advancement through Technological Innovation), Montreal, QC
Abdi, D. and Bitsuamlak, G.T. (2014). Wind flow simulations on idealized and real complex terrain using various turbulence models. Advances in Engineering Software, 75, 30–41.
Dagnew, A., Bitsuamlak, G.T. (2013). Computational evaluation of wind loads on buildings: A review. Wind and Structures, 16(6), 629-660.
Bitsuamlak, G.T., Stathopoulos, T., Bédard, C. (2007). Effect of topography on design wind load combined numerical and neural network approach”, Journal of Computing in Civil Engineering, ASCE, 21 (6), 384-392.
Bitsuamlak, G.T., Stathopoulos, T., Bédard, C. 2006. “Effect of upstream hills on design wind load: a computational approach. Wind and Structures, 9(1), 37-58.
Bitsuamlak, G.T., Stathopoulos, T., Bédard, C. (2004). Numerical evaluation of turbulent flows over complex terrains: A review, Journal of Aerospace Engineering, 17(4), 135-145.

Explicit Exposure Modeling

Explicit and implicit ground roughness modeling

In the computational model (CFD), ground roughness effect on the wind flow is modeled either using explicit roughness element discretization (provided that the computational cost is affordable) or implicitly, for example, by using fractal surfaces.

Abdi, D. and Bitsuamlak, G.T. (2016). Wind flow simulations in idealized and real built environments with models of various level of complexity, Wind & Structures, 22 (4), 503-524.
Aboshosha, H., A., Bitsuamlak, G.T., El Damatty, A. (2015). LES of wind in the built-environment: Inflow and roughness induced by fractal surfaces. Sustainable Cities and Society, 19, 46-60.
Abdi, D. and Bitsuamlak, G.T. (2014). Numerical evaluation of the effect of multiple roughness changes. Wind and Structures, 19(6), 585-601.